LW - Towards Multimodal Interpretability: Learning Sparse Interpretable Features in Vision Transformers by hugofry
The Nonlinear Library: LessWrong

LW - Towards Multimodal Interpretability: Learning Sparse Interpretable Features in Vision Transformers by hugofry

2024-04-30
Link to original articleWelcome to The Nonlinear Library, where we use Text-to-Speech software to convert the best writing from the Rationalist and EA communities into audio. This is: Towards Multimodal Interpretability: Learning Sparse Interpretable Features in Vision Transformers, published by hugofry on April 30, 2024 on LessWrong. Two Minute Summary In this post I present my results from training a Sparse Autoencoder (SAE) on a CLIP Vision Transformer (ViT) using the ImageNet-1k...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Create Your Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free