ZipIt! Merging Models from Different Tasks without Training
Papers Read on AI

ZipIt! Merging Models from Different Tasks without Training

2023-05-10
Typical deep visual recognition models are capable of performing the one task they were trained on. In this paper, we tackle the extremely difficult problem of combining completely distinct models with different initializations, each solving a separate task, into one multi-task model without any additional training. Prior work in model merging permutes one model to the space of the other then adds them together. While this works for models trained on the same task, we find that this fails to...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Creat Yourt Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free