RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment
Papers Read on AI

RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment

2024-05-22
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data. Such biases can produce suboptimal samples, skewed outcomes, and unfairness, with potentially serious consequences. Consequently, aligning these models with human ethics and preferences is an essential step toward ensuring their responsible and effective deployment in real-world applications. Prior research has primarily employed Reinforcement Learning from Human Feedback (RLHF) to...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Creat Yourt Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free