arxiv preprint - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
AI Breakdown

arxiv preprint - Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters

2024-08-10
In this episode, we discuss Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters by Charlie Snell, Jaehoon Lee, Kelvin Xu, Aviral Kumar. The paper explores the impact of increased inference-time computation on Large Language Models (LLMs) to enhance their performance on challenging prompts. It examines two primary methods for scaling test-time computation and finds that their effectiveness varies with the prompt's difficulty, advocating for an adaptive...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Create Your Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free