Episode 23: Why do ensemble methods work?
Data Science at Home

Episode 23: Why do ensemble methods work?

2017-10-03
Ensemble methods have been designed to improve the performance of the single model, when the single model is not very accurate. According to the general definition of ensembling, it consists in building a number of single classifiers and then combining or aggregating their predictions into one classifier that is usually stronger than the single one. The key idea behind ensembling is that some models will do well when they model certain aspects of the data while others will do well in...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Create Your Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free