From cosmic rays in Antarctica, to chasing Eclipses to learn about stellar weather. Neutrinos are hard to track and detect, as are cosmic rays. Neutrinos suddenly coming out of Antarctica baffled scientists hunting for cosmic rays. Underground glacial lakes, compacted snow, cosmic can help explain mysterious neutrino emissions. Tracking eclipses and gathering data over 20 years can help us understand stellar weather. By studying the Sun's corona, scientists can better understand the magnetic field and stellar weather. The sun ...
From cosmic rays in Antarctica, to chasing Eclipses to learn about stellar weather. Neutrinos are hard to track and detect, as are cosmic rays. Neutrinos suddenly coming out of Antarctica baffled scientists hunting for cosmic rays. Underground glacial lakes, compacted snow, cosmic can help explain mysterious neutrino emissions. Tracking eclipses and gathering data over 20 years can help us understand stellar weather. By studying the Sun's corona, scientists can better understand the magnetic field and stellar weather. The sun changes activity over 11 year cycles, and it's magnetic field also rearranges itself from highly structured to loose and messy.
- Ian M. Shoemaker, Alexander Kusenko, Peter Kuipers Munneke, Andrew Romero-Wolf, Dustin M. Schroeder, Martin J. Siegert. Reflections on the anomalous ANITA events: the Antarctic subsurface as a possible explanation. Annals of Glaciology, 2020; 1 DOI: 10.1017/aog.2020.19
- Benjamin Boe, Shadia Habbal, Miloslav Druckmüller. Coronal Magnetic Field Topology from Total Solar Eclipse Observations. The Astrophysical Journal, 2020; 895 (2): 123 DOI: 10.3847/1538-4357/ab8ae6
View more