Masked Siamese Networks for Label-Efficient Learning
Papers Read on AI

Masked Siamese Networks for Label-Efficient Learning

2022-08-05
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Creat Yourt Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free