77. 并购重组会兴起吗?和陆复斌聊他隐蔽做全球并购这5年
2024年,不少海外大型PE纷纷募集了巨额的并购基金,中国也出台了针对并购多项鼓励政策。就在前不久,9月24日,证监会发布《关于深化上市公司并购重组市场改革的意见》(即“并购六条”)。并购重组市场会变活跃吗?本集我们的主题正是并购。我邀请霞飞资本创始人、百度前VP陆复斌来聊聊。陆复斌离开百度以后,从2017年就开始在全球并购市场上寻找机会。到今天他总计完成5笔交易,投出21亿美金。这些交易来自美国、以色列和东南亚,大多完成得隐蔽,在网络上你能找到的只有只言片语。我很好奇,他为什么要保持一种刻意营造的低调。插一句口播:除了小宇宙,大家还可以在Apple Podcast、Spotify、YouTube、腾讯新闻、喜马拉雅等多个平台关注《张小珺Jùn|商业访谈录》。特别是Apple Podcast。希望大家能够在Apple Podcast上多多给予积极的评分和留言。谢谢大家!大家国庆节快乐!我们的播客节目在腾讯新闻首发,大家可以前往关注哦,这样可以第一时间获取节目信息和更多新闻资讯:) 03:00 嘉宾经历:美国NASA-创业-亚马逊-百度VP 06:27 贝索斯管理方法:Two-Pizza Teams 20:51 过去5年在全球市场做并购,投出21亿美金 26:06 当互联网越来越像传统行业,退出方式会变得多元 30:13 并购、时代与案例 36:46 已并购deal的幕后故事: 全球同性恋社交网络Grindr(三年两次转手、从昆仑万维买过来) 以色列公司英为财情(Investing.com) 加密货币交易所Coins 01:00:48 常见并购步骤 01:05:22 怎么判断好资产?什么是便宜? 01:12:39 我竞价试图收购Yahoo的故事 01:16:45 最难的是收购完的经营 01:18:50 美国、以色列、东南亚做生意差异性 01:25:21 未来几年并购重组趋势【更多信息】联络我们:微博@张小珺-Benita,小红书@张小珺jùn更多信息欢迎关注公众号:张小珺
76. 王小川返场谈o1与强化学习:摸到了一条从快思考走向慢思考的路
在过去两集节目中,关于OpenAI o1和AGI范式转移,我们先是推出了一集预言,之后推出了一集解析。在一个新范式来临的临界点上,我们希望听到更多来自业界不同视角的声音。哪怕这些声音是切片的、冲突的,我们都希望当做一种记忆和留存收集起来。今天这期是王小川的返场。王小川在创业开始就关注到强化学习并且很早开始公开谈论。他曾说,大模型代表快思考,它叫“学”;强化学习是慢思考,它叫“思”。“学”和“思”两个系统最终会走向融合。除了o1,王小川也聊了聊强化学习在一个特定场景——医疗——中的应用。我们的播客节目在腾讯新闻首发,大家可以前往关注哦,这样可以第一时间获取节目信息和更多新闻资讯:) 01:30 大模型是“学而不思则罔”,强化学习是“思而不学则殆” 03:45 Sam Altman被宫斗下课与强化学习大神Noam Brown的动态 05:45 OpenAI o1是范式升级,摸到了一条从快思考走向慢思考的道路 (DIKW模型:Data – Information – Knowledge – Wisdom) 08:18 怎么看o1隐藏思维过程,有人破解o1思维链会被警告要封号? 09:04 从以语言为核心走向思维链,分两阶段运行增加泛化性 11:38 强化学习 vs 监督学习 16:39 除了数学和代码以外,医疗是可以用强化学习提升的领域 19:55 之前做强化学习实验没有CoT(思维链),今天更强调CoT了 22:16 复现o1 vs 复现GPT-4 26:30 未来几年将从强化学习范式走向写代码解决问题新范式 28:35 做“水涨船高的应用”,不只是“沿途下蛋的应用” 31:35 创业公司要走出大厂射程,在射程内你是没什么好活的【更多信息】联络我们:微博@张小珺-Benita,小红书@张小珺jùn更多信息欢迎关注公众号:张小珺
75. 和OpenAI前研究员吴翼解读o1:吹响了开挖第二座金矿的号角
上集节目,广密在OpenAI o1问世之前,准确地预言了代号为“Strawberry”(草莓)的项目走向,以及它背后暗示的AGI范式已经转移,强化学习开启了新赛道。这集节目录制在o1问世之后,我第一时间和边塞科技创始人、清华叉院信息研究院助理教授,同时也是前OpenAI研究员的吴翼聊了聊。他的研究方向正是强化学习。吴翼从技术视角全方位地解读了o1模型,并且分享了只有内部视角才能看见的真实的OpenAI。我们的播客节目在腾讯新闻首发,大家可以前往关注哦,这样可以第一时间获取节目信息和更多新闻资讯:) 01:50 2019年在OpenAI做研究员 03:04 那个年代所有PHD都希望去Google Brain和DeepMind 03:46 OpenAI o1-preview初体验,很意外在用户使用端做这么大规模的推理 07:20 pre-training(预训练)能挖的金矿越来越少,以强化学习为基础的post-training(后训练)是另一个大金矿,使迈向AGI的梯子多了几节 09:00 o1-preview版本是GPT-3时刻,到没到ChatGPT时刻要看正式版本 10:33 o1应该核心关注两个要点和背后的技术原理 13:54 强化学习能否探索出Scaling Law有希望,但很复杂 15:06 强化学习三要素:reward model+搜索和探索+prompt,每一块都很难 16:42 2014年开始,UC Berkeley集体转向,押注强化学习 19:36 RL算法的演进:从DQN(Deep Q-Network)到PPO(Proximal Policy Optimization) 23:45 相信会带来通用能力而不是垂类能力提升 24:47 长文本是实现AGI的第一步,推理能力是第二步 29:57 通过o1-preview能反向复原哪些技术细节? 34:00 reward model不太可能有一个单独的小组闭着眼睛训练,是耦合的 38:30 思维链、安全、幻觉和算力 41:25 为什么这么项目叫“Q*”?后来又叫“草莓”?梗都很有意思 49:49 o1不代表垂直模型,依然相信会出现全能的大统一模型 57:57 关于Scaling Law,2019年OpenAI内部讨论的细节 01:00:26 2019年的OpenAI处于“闭着眼睛挖矿的状态” 01:03:20 OpenAI当年如何做管理:搞大新闻、发博客,KPI是博客关注量 01:10:28 2020年离开OpenAI后悔吗?o1发布前的预言单集:AGI范式大转移:和广密预言草莓、OpenAI o1和self-play RL|全球大模型季报4【更多信息】联络我们:微博@张小珺-Benita,小红书@张小珺jùn更多信息欢迎关注公众号:张小珺
74. 从蒸汽机到无人驾驶4|Waymo和它的对手们:我暗中考察了四个月
我们的节目正在推出新系列【从蒸汽机到无人驾驶】,今天是第4集。因为,在我自己学习自动驾驶的过程中觉得,这个行业的知识壁垒很高、信息不对称也很严重。所以邀请孟醒来做一个自动驾驶的深度科普。之前的节目介绍过,自动驾驶分成两条线索:1、以特斯拉为代表的辅助驾驶路线;2、以Waymo为代表的全无人驾驶路线。围绕路线之争,这个行业吵了10年。在上集,孟醒着重聊了第一条线索:特斯拉FSD进化史。本集,我们的重心则是另一条:低调的Waymo和它的对手们。很有意思的是,孟醒曾带队在凤凰城调研Waymo,还暗中探访了它的“老巢”。本集是《张小珺Jùn|商业访谈录》和《技术不无聊》的串台节目。《技术不无聊》是孟醒制作的一档新播客。我们的播客节目在腾讯新闻首发,大家可以前往关注哦,这样可以第一时间获取节目信息和更多新闻资讯:)【嘉宾小传】孟醒,五源资本合伙人、卡尔动力董事长,曾担任滴滴自动驾驶COO、顺为资本科技组负责人;在顺为期间,孟醒投资了小鹏汽车、Momenta等明星公司;加入顺为前,孟醒曾经作为创始人和CEO创办两家人工智能领域的明星创业公司,分别是美国的Orbeus和中国的知图科技,两家公司都被并购;孟醒还曾在摩根大通投资银行部门任职,负责亚太区科技领域的投资并购以及IPO项目,参与项目金额超过600亿美金。孟醒拥有加州大学伯克利分校应用数学和经济学学士,以及麻省理工大学斯隆商学院MBA学位。 02:00 Waymo始于2009年,是Google X实验室一个项目 04:32 我访谈Google无人车创始人Sebastian Thrun,结果被人骂了,很惭愧 07:13 DARPA Grand Challenge(美国DARPA出资赞助的无人驾驶赛)被埋没的故事 13:24 Waymo负责人连连换届: 1. Sebastian Thrun(2009-2013):Sebastian Thrun是斯坦福大学教授,也是谷歌自动驾驶汽车项目创始人之一 2. Chris Urmson(2013-2016):Chris Urmson是卡内基梅隆大学机器人专家,参与了多次DARPA自动驾驶挑战赛 3. John Krafcik(2015-2021):John Krafcik是汽车行业资深人士,曾任现代汽车北美公司总裁兼首席执行官 4. Tekedra Mawakana和Dmitri Dolgov(2021-2023):Tekedra Mawakana是Waymo首席运营官,法律和公共政策背景出身;Dmitri Dolgov是Waymo首席技术官,参与自动驾驶技术开发多年 5. Dmitri Dolgov和Saswat Panigrahi(2023年至今): Dmitri Dolgov继续担任CEO之一,Saswat Panigrahi是Waymo首席产品官,负责产品管理和战略规划 18:05 Waymo技术关键变化,对最简洁漂亮的架构端到端抱有理想 21:55 我带队在凤凰城调研Waymo四个月,还暗中探访了Waymo“老巢” 38:30 无人驾驶第二名Cruise(创始人Kyle Vogt),两年、40人团队,10亿美元卖给通用汽车 43:24 一起安全事故,使Cruise从顶峰极速坠落 48:00 为什么Waymo和Cruise同样作为大企业分支,风格差异这么大? 57:40 Uber也曾是无人驾驶一个有竞争力的对手,怎么退出了比赛? 59:17 另外两位竞争对手现况:Zoox、Aurora【从蒸汽机到无人驾驶】系列和何小鹏聊,FSD、“在血海游泳”、乱世中的英雄与狗熊和楼天城聊聊Robotaxi和ACRush:“L2做得越厉害,离L4越远”从蒸汽机到无人驾驶3|和孟醒聊特斯拉FSD进化史【更多信息】联络我们:微博@张小珺-Benita,小红书@张小珺jùn更多信息欢迎关注公众号:张小珺
73. AGI范式大转移:和广密预言草莓、OpenAI o1和self-play RL|全球大模型季报4
今天这集是我和广密【全球大模型季报】第4集。这期2024年Q3季报,提前和大家见面。我们正进入的9月会是AGI的一个大月,OpenAI造势已久且绝密的项目“草莓(Strawberry)”将在不久后揭开它神秘的面纱。此外,Anthropic也会推出Claude 3.5 Opus,这两个模型将是AGI进程是否顺利的关键风向标。这些项目很可能暗示了硅谷AGI范式已经静悄悄地发生剧烈转移。本集节目带来了对AGI发展路径的最大猜想——硅谷AGI范式正在发生转移,self-play RL(强化学习)开启了新赛道。大部分人还没意识到,在纯靠语言模型预训练的Scaling Law这个经典物理规律遇到瓶颈后,多家硅谷明星公司已经把它们的资源重心押宝在一条新路径上:self-play RL(自博弈强化学习)。只不过,这个范式转移还未形成共识。Self-play RL到底是什么?它如何有别于传统路径?它能成为继续Scaling Law的一把神奇钥匙吗?这集节目是关于self-play RL的一篇高质量科普,也希望为大模型从业者带来方向性的启发。除了self-play RL,我们着重探讨了硅谷一级市场的明星赛道(Coding、视频生成、通用机器人),以及OpenAI与科技巨头近况。希望我们【全球大模型季报】能帮大家了解最前沿的AGI动态,并且能持续给大家带来启示。本集是《张小珺Jùn|商业访谈录》和《海外独角兽》的串台节目。我们的播客节目在腾讯新闻首发,大家可以前往关注哦,这样可以第一时间获取节目信息和更多新闻资讯:)坏的推演猜测,GPT-5不乐观;好的推演猜测,RL开启新赛道 02:30 语言模型预训练的范式或许遇瓶颈,模型scaling边际效益开始递减 05:21 为什么不一定能支持模型在GPT-4o基础上大幅跃升?现在处于“真空死亡地带”? 06:43 我最担心的是,纯靠语言模型的经典Scaling Law /Pre train这个物理规律遇到瓶颈,或者在更大参数比如2-3T以上的情况下开始失效了 09:37 如果scaling law在模型变大的过程中不work,现在有三条潜在路径:1、多模态尤其是视觉(但还没有证据说能从视觉模态训练涌现智能能力); 2、10万卡集群(但10万卡集群充分互联的难度比预期难,可能是全人类最难的项目之一); 3、强化学习self-play RL(这是范式级别的大转变!) 12:53 如果我是AI公司CEO,我会200%资源all in RL这条路 13:40 概念解释:Reinforcement Learning,简称RL,中文强化学习(Ilya用一句话概括强化学习:让AI用随机路径去尝试一个新任务,如果效果超出预期,就更新神经网络的权重让AI记得多使用成功的实践,再开始下一次尝试) 19:05 代码和数学可以变得很强,能不能泛化到更多领域没有证据 22:39你也可以把语言和预训练比作人类基因组,携带着人类几千年进化的基因,强化学习RL就是人类成长的一生 24:55 必须很聪明的模型才能有能力做self-play RL的探索 27:07 Anthropic Claude 3.5是这一波标志性的产品,他们不搞Sora/搜索,主线是RL;业内少数人意识到RL的重要性是最近两个月 28:35 硅谷明星公司现阶段的资源投入?1-2家公司把RL当作最高优先级 28:56 2024年9月OpenAI和Anthropic即将要发布的,什么值得期待? 29:42 AGI范式大转移之下,还会有GPT-6和GPT-7吗?(可能明年会看到很小的模型比今天GPT-4o要聪明非常多,一个期待是实现AGI不一定需要巨量参数的模型) 30:33 新范式的困境和卡点 32:52 Character.AI出售给Google预示AGI竞赛上半场结束,下半场开始,创始人Noam从Google进入self-play RL下半场 34:36 新范式下,还需要那么多GPU吗?很多人关心英伟达股价 37:06 AGI范式转移只在最核心的researcher中有共识,几百人,还没扩散 38:55 Claude 3.5 Sonnet显著提升,带动了编程工具Cursor的火爆出圈 40:08 OpenAI在造势的草莓、Q*,猜测背后都是强化学习RL 41:55 国内公司应该应该all in 200%跟进RL 42:44 语言模型和RL是乘级关系硅谷AI一级市场的四个明星赛道 45:12 硅谷的AI赛道:围绕LLM周边有3-4个圈,搜索、代码Coding、视频、机器人 1、Coding:在硅谷出现了4-5家独角兽(Devin、Augment 、Magic、Poolside,都已经20-30亿美元估值),最近编程工具Cursor出圈 2、 视频:这个赛道诱人,但格局不稳定、决胜窗口长 3、通用机器人:想赌具身领域也有个OpenAI,现在是基础科学突破的问题,没看到在机器人领域的“通用泛化能力”出现 57:00 美国通用机器人的明星项目(Pi、The Bot是业界公认最头部的项目,除此之外融资金额很大、声量也比较高的是Skild AI、Figure AI) 58:31 国内vs硅谷机器人:硅谷投robot foundation model一个大脑,像Andorid;在国内投整机,OV和小米 01:01:56 LLM->多模态->具身智能->世界模型,这是AI发展路径 01:05:54 LLM vs 移动互联网,叙事逻辑是什么?哪些明线与暗线? 01:07:04 有没有可能,今天不做强化学习的公司未来都跑不出来 01:08:05 站在现在,重新评论一下中国LLM?“月亮和六便士”OpenAI和科技巨头 01:12:37 OpenAI 1、有点浪费技术领先的红利,产品没接住 2、联合创始人Greg Brockman、John Schumann离职 3、Ilya离开应该是bet on两个路线(多模态/强化学习,大概率是RL) 01:17:10 Q*和草莓和RL应该是一件事,草莓是代号,RL是方法 01:18:07 回答红杉美国合伙人 David Cahn发布最新文章《AI’s $600B Question》 01:20:00 在2024年Q3,AI叙事还有哪些非共识? 01:22:45 Character.AI之后,哪些AI公司还会被收购?做个预测 01:23:38 2000年互联网hype破灭后只留下Amazon一家公司,今天AI hype如果破灭了,谁是下一个Amazon? 01:24:24 AGI第一幕是科技巨头受益,第二幕还没完全展开【全球大模型季报】系列2023年:口述全球大模型这一年:人类千亿科学豪赌与参差的中美景观2024年Q1:和广密聊AGI大基建时代:电+芯片=产出智能2024年Q2:口述全球大模型这半年:Perplexity突然火爆和尚未爆发的AI应用生态【更多信息】联络我们:微博@张小珺-Benita,小红书@张小珺jùn更多信息欢迎关注公众号:张小珺