MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
Papers Read on AI

MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning

2024-05-28
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models. In this paper, we analyze the impact of low-rank updating, as implemented in LoRA. Our findings suggest that the low-rank updating mechanism may limit the ability of LLMs to effectively learn and memorize new knowledge. Inspired by this observation, we propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters. To...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Create Your Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free