R-Drop: Regularized Dropout for Neural Networks
Papers Read on AI

R-Drop: Regularized Dropout for Neural Networks

2022-01-26
Dropout is a powerful and widely used technique to regularize the training of deep neural networks. Though effective and performing well, the randomness introduced by dropout causes unnegligible inconsistency between training and inference. In this paper, we introduce a simple consistency training strategy to regularize dropout, namely R-Drop, which forces the output distributions of different sub models generated by dropout to be consistent with each other. 2021: Xiaobo Liang, Lijun Wu, Juntao Li, Yue...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Creat Yourt Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free