Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases
Papers Read on AI

Understanding INT4 Quantization for Transformer Models: Latency Speedup, Composability, and Failure Cases

2023-04-17
Improving the deployment efficiency of transformer-based language models has been challenging given their high computation and memory cost. While INT8 quantization has recently been shown to be effective in reducing both the memory cost and latency while preserving model accuracy, it remains unclear whether we can leverage INT4 (which doubles peak hardware throughput) to achieve further latency improvement. In this work, we fully investigate the feasibility of using INT4 quantization for...
View more
Comments (3)

More Episodes

All Episodes>>

Get this podcast on your phone, Free

Create Your Podcast In Minutes

  • Full-featured podcast site
  • Unlimited storage and bandwidth
  • Comprehensive podcast stats
  • Distribute to Apple Podcasts, Spotify, and more
  • Make money with your podcast
Get Started
It is Free