Knightian Freedom: Can a quantum computer swerve from determinism?
In this episode of the Justin Riddle Podcast, Justin dives into the concept of Knightian Freedom where large enough computational spaces become intractably complex to the point where maybe freewill is possible. The focus of this episode is a paper put out by Hartmut Neven (of Google’s Quantum AI Lab) and colleagues from 2021 entitled “Do robots powered by a quantum processor have the freedom to swerve?” This paper discusses how the exponentially large spaces that quantum computers evolve into are so large that they cannot be represented or simulated on digital computers. The size is so vast that it would take a computer the size of the universe computing for trillions of years to simulate even a few femtoseconds of the quantum computers that are about to be commonplace. Similar to modern AI, we will won’t be able to understand why a quantum computer generated the output that it did and perhaps this is the essential ingredient that leads to freewill. Rampant incomputable complexity is freewill. Second, Hartmut and colleagues propose a simple experiment to reveal whether or not there are additional factors that play into what output is generated by a quantum computer. Assume you run a quantum circuit that generates a perfect uniform distribution between many different possible outputs. Then, you observe that the quantum computer does not behave as if there was a uniform distribution, but instead selects one of those possible outputs more often. This is the ‘preference’ of the quantum computer. Next, you develop a circuit to amplify these deviations from uniformity with the intention of amplifying the probability of entering into that preferred state. Now, we have essentially created a ‘happy circuit’ which embraces the quirky preference of our quantum computer. Finally, you can correlate deviations from this happy state to psychological data in an effort to build up a taxonomy of subjective experiences that the quantum computer can enter into. Finally, you embed the quantum computer with its happy circuit into an artificial neural network such that errors produced by the AI push the quantum computer away from happiness and this unhappiness is fed back into the AI. Now we have created an AI system with quantum feelings! Will this newfound sense of subjectivity enable more effective AI systems or will the AI get bogged down by a spiral of despair and refuse to compute?! All of these questions and more are explored here. Enjoy!
Three Dimensions of Time: reconciling experienced time with physics
In this episode of the Justin Riddle Podcast, Justin explores a novel conceptualization of time as comprised of three distinct dimensions in an attempt to make sense of our subjective experience. Traditional physics does not account for the experience of always being in the present moment, time flowing from the past into the future, and the openness of the future versus the locked in events from the past. Often times we are told that our subjective experience of time is an illusion: that there is no validity to our experience of time and these are just made-up constructs in biology. We are skeptical of this dismissive approach to thinking about time. First off, there are sparse descriptions of the flow of time in physics with many descriptions viewing time as simply the fourth dimensions and being completely time reversible. The concept of entropy in physics accounts for some change through time because entropy (chaos) is described as always increasing from the past to the future. However, entropy is generated by simple laws of physics and yet when these time-reversible laws are run backwards – systems are seen to magically jump into alignment with each other. In sum, the description of time from simple physics forces does not provide a satisfactory explanation of our experience of time. Our solution to the problem of time is to propose additional “dimensions” of time that go beyond physicalist framing. The dimensions are objective time, subjective time, and alternative time. We describe how subjective time is derived from our biological systems and represents the rate of information processing of the brain. Alternative time provides the various different options that a system could evolve into. Finally, objective time provides a universal frame for synchronizing all the various biological and physical clocks. Note, that there is a “three dimensions of time” theory from physics that emerged coincidentally around the same time that this video was posted. This theory differs in that our three dimensions of time are not akin to physical dimensions and possess qualitative differences from each other. Finally, we discuss how the fundamentals of quantum physics and quantum computation provide a novel framing of time in that the measurement (or collapse of the wave function) produces a time-irreversible change that progresses the system into the future. We can conceptualize the evolution of the wave function of a quantum system as an exploration of the alternative time dimension and the rate of collapse of this system as some description of its subjective time dimensions. Objective time might correspond to Roger Penrose’s description of a Platonic realm where mathematical objects enter into the quantum computation and produce an objective progression via tapping into a universal frame of reference.
#40 – Nested Observer Windows: the case for hierarchical consciousness
In episode 40 of the Justin Riddle Podcast, Justin provides an update of the Nested Observer Windows (NOW) Model. The paper describing this theory was recently published in the open-access Neuroscience of Consciousness journal (link below) and this video is an extended version of the Plenary talk that Justin gave at the Science of Consciousness conference in April of 2024 in Tucson, AZ (link below to conference recording). The NOW Model describes the mind as a nested hierarchical system in which there are many different cognitive systems within the brain at multiple scales. We are familiar with neuron-centric theories of consciousness, and yet why are we so fixated on the level of the neuron. There are synapses that comprise the neuron, there are microtubule systems within the neurons that appear to be electrically active, and there are neuronal population dynamics above the neuron which display prominent electrical properties. The cellular level is one level within a multi-scalar system. Evidence from cognitive neuroscience is suggesting that the low-frequency macroscopic electrical activity in the brain is closest correlated to cognition and brain stimulation techniques that drive these neural oscillations can reproducibly create changes in cognition. Therefore, it appears that these macroscopic scales are “causally” relevant to cognition. How then do all of these multiple levels connect to each other? Observations from neuroscience show us that these multiple scales are electrically coupled to each other, a phenomenon called cross-frequency coupling. With coupling across these multiple scales, there is a mechanism for how information processed at different scales can be communicated up and down the nested hierarchy of the brain. The NOW Model essentially takes cross-frequency coupling very seriously. Your mind is at the apex, the top, of the brain hierarchical system and there are nested cognitive processing systems within you. A model by which there are nested cognitive systems explains a whole range of psychological phenomena that are not current explainable under single-level neuron theories of consciousness. For example, the fact that we are only aware of a high level of abstraction of our experience and yet can interact with a rich perceptual landscape and initiated complex motor movements can be explained by an interaction between ourself at the slow apex and the lower levels. Another explanation is how slow our cognition really is: the NOW Model suggests that we are operating in the time range of 1 cycle per second or even slower. Our thoughts are sluggish and filled with abstraction (perhaps a key to intelligence) but contain the richness of the faster systems. Beyond capturing a deeper range of every day experiences, the NOW Model also readily accounts for dissociative identity disorder and new psychotherapy techniques that conceptualize the self as a family (internal family systems). This is just the tip of the iceberg from changing our self-conceptualization from singular into a multiplicity of nested systems. There is a lot of work to be done in this space to validate the potential cognitive reality of the NOW Model!
#39 – The Problem with Natural Selection: exploring modern mechanisms for evolution
In episode 39 of the quantum consciousness series, Justin Riddle explores the mechanism behind natural selection in evolution. This is not a question about humans evolving from animals, but instead is raising the question about what is the driving force behind the process of evolution. Charles Darwin described evolution as a random expression of features that are then selected by the environment. The animals that are able to reproduce will preferentially spread their features to next generations. Gradually, species will change based on these survival pressures. The problem with this model is that the random expression of features and then reproduction is an extremely slow process. While including the expression “then add millions of years” appears to be sufficient at first glance to account for such slowness, a truly random process that is this slow will never build anything sufficiently complicated. Humans are notoriously terrible at appreciating exponentials and combinatorics: a deck of cards will likely never be shuffled into the same pattern twice even if billions of people frantically shuffled decks of cards across the planet for a million years. If the core force of evolution is “randomness,” then the probability of repeatedly creating novel stable biological structures such as the liver or the immune system is vanishingly small. Luckily, there is no reason to be stuck in 1800s ways of thinking since we live in the modern information age with advanced digital computers and quantum computers on the horizon. A simple update to natural selection is to acknowledge a domain of algorithms and “Platonic” / mathematical forms that are being carried out in evolution. The creation of a novel organ could arise through the combination of novel algorithms rather than combing “physical” parts in a random manner. However, a core hurdle of digital computer models of life is the need for a programmer. Without a programmer, digital computers are just more random physical elements unlikely to create anything. While we are just at the emergence of quantum computer technology, quantum computers might express a naturally occurring form of computation that does not require explicit programming. Quantum computation at the core of evolution would not be random and would further emphasize the importance of a single processing unit in the organism – the mind. Consciousness as a quantum computer would be critical to the evolution of the species. Your choices and thoughts are the evolution of your body and by extension the human species. Finally, the goal of evolution might not just be the furthering of your life, but if we take human knowledge to actually be real, then using your life to contribute to education, science, and medicine actually makes a difference to the human species. An expanded view of evolution includes expanding the domain of collective human knowledge, the experience of the individual, and the creation of a flourishing society.
#38 – Reject the Multiverse: taking wave function collapse seriously
In episode 38 of the quantum consciousness series, Justin Riddle takes on the concept of the multiverse and provides arguments for why he thinks we live in a single universe. The concept of the multiverse arose from the recognition that at the fundamental level quantum systems are splitting into different possible futures. This split in space-time reality if taken at face value implies that the universe is splitting into multiple parallel universes in which slightly different events take place. However, quantum mechanics is also faced with a measurement process by which these parallel universes are destroyed and “collapsed” down to a single reality of what actually happens. This duality between a superposition of multiple possible realities and a measurement that reduces the probability space down to a single universe is the fundamental mystery at the heart of quantum mechanics. The tricky bit is that we live in a culture that more readily accepts the multiverse interpretation of quantum mechanics and is hesitant to dive into the murky depths of wave function collapse theories. For example, Roger Penrose describes a mechanism why which wave function collapse occurs at a specific threshold because these parallel universes in possibility space are unstable and collapse. This “objective reduction” theory of wave function collapse is still mostly considered as a fringe and unsubstantiated theory (although the times are slowly changing). To assert the universe and reject the multiverse is to take wave function collapse seriously! As we enter the quantum information age, society will start to get used to thinking about a digital information state that is chosen as input into a quantum computer, then from this state a wave function evolves and these possible realities interfere with each other. Finally, the system is measured again and digital information is extracted from the system. Computation in the future will be a hybrid of digital and quantum computation in a dualistic interplay. From this perspective, the idea that each of those possibilities is dissociated from each other into a multiverse just does not fit with the idea of interference patterns and quantum computation. If all the suboptimal solutions of a quantum computation are different parallel universe that never interact, then this undermines the concept of quantum computation. Finally, at the core of the multiverse is the idea that everything is random and nothing happens for a reason. We just happen to be in the universe that worked out despite countless failed universes all around us. This mechanism of action at the core of the idea is a bit too overly simple and reverts into more nihilistic physicalism. From a human outlook, the multiverse is another tenant of nihilism that challenges the idea that your choices matter, you are real, and there is something meaningful occurring in the universe.